A framework for the identification of hotspots of climate change risk for mammals

Michela Pacifici, Piero Visconti and Carlo Rondinini


Maps of projected negatively impacted species by grid cell in the RCP8.5 scenario.

As rates of global warming increase rapidly, identifying species at risk of decline due to climate impacts and the factors affecting this risk have become key challenges in ecology and conservation biology. Here we present a framework for assessing three components of climate-related risk for species: vulnerability, exposure and hazard. We used the relationship between the observed response of species to climate change and a set of intrinsic traits (e.g., weaning age) and extrinsic factors (e.g., precipitation seasonality within a species geographic range) to predict, respectively, the vulnerability and exposure of all data-sufficient terrestrial non-volant mammals (3953 species). Combining this information with hazard (the magnitude of projected climate change within a species geographic range) we identified global hotspots of species at risk from climate change that includes the western Amazon basin, south-western Kenya, north-eastern Tanzania, north-eastern South Africa, Yunnan province in China, and mountain chains in Papua-New Guinea. Our framework identifies priority areas for monitoring climate change effects on species and directing climate mitigation actions for biodiversity.


Read full publication

Posted in Lab

Species’ traits influenced their response to recent climate change​

Michela Pacifici, Piero Visconti, Stuart Butchart, James Watson, Francesca Cassola, Carlo Rondinini


The paper ‘Species traits influenced their response to recent climate change’ has just been  published in the journal Nature Climate Change.

The study reviews the observed impacts of climate change on birds and mammals and aims to identify the relationships between their response to climate change and a set of selected intrinsic traits and spatial factors, based on a total of 70 studies covering 120 mammal species and 66 studies relating to 569 bird species whose populations had (or sought evidence for) a response to climate change in recent decades.

The authors found evidence of observed responses to recent changes in climate for almost 700 species, but only 7% of mammals and 4% of birds that showed a negative response are coded on the IUCN Red List of Threatened Species as threatened by ‘climate change and severe weather’ under the ‘threats classification scheme’.

Mammals most at risk from climate change are not fossorial, and have low precipitation seasonality within their distributions. For birds, negative responses in both breeding and non-breeding areas were generally observed in species that live at high altitudes, and have low temperature seasonality within their distributions. In addition, large changes in temperature in the last decades negatively affected both mammals and birds.

According to predictions, it is likely that for 47% of threatened mammals and 23% of threatened birds at least one population has already responded negatively to climate change. “This implies that, in the presence of adverse environmental conditions, populations of these species have a high probability of being negatively impacted also by future climatic changes” says lead author Dr. Michela Pacifici at Sapienza University of Rome. The lab is partner of the IUCN Red List with the Global Mammal Assessment Program.

The list of charismatic species likely to have been negatively impacted include the snow leopard, the cheetah, the Bornean orangutan, both species of elephants, the western and eastern gorillas, the Javan, Sumatran and black rhinos among mammals, and the Fiordland crested penguin, the Spanish eagle and the Steller’s eider among birds.

By making predictions on the species for which the levels of climatic hazard experienced are known, the authors provide the first quantification of the number of taxa that may have already been impacted, and also validate trait-based vulnerability assessments. The results of this work suggest that the impact of climate change on mammals and birds in the recent past is currently greatly underappreciated, and this may have important implications for both the scientific community and intergovernmental policy fora.

“Solid evidence is accumulating that climate change has already affected some species, but not others. Based on this evidence, we identify the traits that can help species cope with change, or doom them to decline and endangerment” says lead Dr. Carlo Rondinini, coordinator of the Global Mammal Assessment Program at Sapienza University of Rome. “Our conclusion is that many more species not yet affected may be threatened by climate change in the near future”.


SharedIt link to access a view-only version of ther paper  http://rdcu.be/pd2w

Posted in Lab

The broad footprint of climate change from genes to biomes to people

Brett R. Scheffers, Luc De Meester, Tom C. L. Bridge, Ary A. Hoffmann, John M. Pandolfi, Richard T. Corlett, Stuart H.M. Butchart, Paul Pearce-Kelly, Kit M. Kovacs, David Dudgeon, Michela Pacifici, Carlo Rondinini, Wendy B. Foden, Tara G. Martin, Camilo Mora, David Bickford, James, E.M. Watson.

Climate change impacts have now been documented across every ecosystem on Earth, despite an average warming of only ~1°C so far. Here, we describe the full range
and scale of climate change effects on global biodiversity that have been observed in natural systems. To do this, we identify a set of core ecological processes (32 in terrestrial and 31 each in marine and freshwater ecosystems) that underpin ecosystem functioning and support services to people. Of the 94 processes considered, 82% show evidence of impact from climate change in the peer-reviewed literature. Examples of observed impacts from metaanalyses and case studies go beyond wellestablished shifts in species ranges and changes to phenology and population dynamics to include disruptions that scale from the gene to the ecosystem.


Climate change impacts on ecological processes in marine, freshwater, and terrestrial
ecosystems. Impacts can be measured on multiple processes at different levels of biological organization within ecosystems. In total, 82% of 94 ecological processes show evidence of being affected by climate change. Within levels of organization, the percentage of processes impacted varies from 60% for genetics to 100% for species distribution.

Read full publication

Posted in Lab

Fire policy optimization to maximize suitable habitat for locally rare species under different climatic conditions: A case study of antelopes in the Kruger National Park

Pacifici M., Visconti P., Scepi E., Hausmann A., Attorre F., Grant R. & Rondinini C. (2015). Fire policy optimization to maximize suitable habitat for locally rare species under different climatic conditions: A case study of antelopes in the Kruger National Park.

Biological Conservation, 191, 313-321. doi:10.1016/j.biocon.2015.07.021


Fire is a key ecosystem driver in savannahs and it can have large impacts on species distribution and density. A re-examination of fire management in Kruger National Park is currently under review with the objective to maintain natural ecosystem dynamics and favour tourists’ ability to observe animals. We used data on location, intensity and frequency of fires and census data on three species considered as rare and of conservation concern in the park, tsessebe, roan and sable antelope to estimate the relationship between fire occurrence and species occurrence and density. We also investigated the impacts of different environmental predictors on antelope populations. The model predictors that most affected the density and presence of antelopes were mean fire return period, the type of geological substrate and the presence of water-points. We then used our models to evaluate different fire management scenarios and make recommendations for an optimal fire management strategy for the conservation of these rare antelopes. We also tested our scenarios under different precipitation conditions, in order to investigate the likely response of species to climate change. Roan antelope is the most sensitive species to climatic variations, while sable seems to be the most resilient. The approach described here can also be used to improve the conservation of locally rare species in other regions and habitats.

Posted in Lab

Assessing species vulnerability to climate change

Michela Pacifici, Wendy B. Foden, Piero Visconti, James E. M. Watson, Stuart H.M. Butchart, Kit M. Kovacs, Brett R. Scheffers, David G. Hole, Tara G. Martin, H. Resit Akçakaya, Richard T. Corlett, Brian Huntley, David Bickford, Jamie A. Carr, Ary A. Hoffmann, Guy F. Midgley, Paul Pearce-Kelly, Richard G. Pearson, Stephen E. Williams, Stephen G. Willis, Bruce Young and Carlo Rondinini

Nature Climate change 5,215–224(2015). doi:10.1038/nclimate2448


The effects of climate change on biodiversity are increasingly well documented, and many methods have been developed to assess species’ vulnerability to climatic changes, both ongoing and projected in the coming decades. To minimize global biodiversity losses, conservationists need to identify those species that are likely to be most vulnerable to the impacts of climate change. In this Review, we summarize different currencies used for assessing species’ climate change vulnerability. We describe three main approaches used to derive these currencies (correlative, mechanistic and trait-based), and their associated data requirements, spatial and temporal scales of application and modelling methods. We identify strengths and weaknesses of the approaches and highlight the sources of uncertainty inherent in each method that limit projection reliability. Finally, we provide guidance for conservation practitioners in selecting the most appropriate approach(es) for their planning needs and highlight priority areas for further assessments.

Posted in Lab

Generation length for mammals

Pacifici M, Santini L, Di Marco M, Baisero D, Francucci L, Grottolo Marasini G, Visconti P, Rondinini C (2013) Generation length for mammals. Nature Conservation 5: 87–94. doi: 10.3897/natureconservation.5.5734. Resource ID: Dryad key: 10.5061/dryad.gd0m3

Generation length (GL) is defined as the average age of parents of the current cohort, reflecting the turnover rate of breeding individuals in a population. GL is a fundamental piece of information for population ecology as well as for measuring species threat status (e.g. in the IUCN Red List). Here we present a dataset including GL records for all extant mammal species (n=5427). We first reviewed all data on GL published in the IUCN Red List database. We then calculated a value for species with available reproductive parameters (reproductive life span and age at first reproduction). We assigned to missing-data species a mean GL value from congeneric or confamilial species (depending on data availability). Finally, for a few remaining species, we assigned mean GL values from species with similar body mass and belonging to the same order. Our work provides the first attempt to complete a database of GL for mammals; it will be an essential reference point for all conservation-related studies that need pragmatic information on species GL, such as population dynamics and applications of the IUCN Red List assessment.

Tragelaphus scriptus, generation length 1914,548 days

Tragelaphus scriptus, generation length 1914,548 days

Posted in Lab