About the GMA


The Global Mammal Assessment (GMA) is a program carried out at the Department of Biology and Biotechnologies, Sapienza University of Rome, a member of the IUCN Red List Partnership. Our laboratory includes a mix of researchers, PhD students, Masters students and Program Officers dedicated to the assessment of mammal extinction risk, the development of mammal distribution maps, and the forecast of scenarios of future mammal loss driven by global change. The tasks of the GMA program include:

  • Keeping up to date information on the ecology, distribution, status and threats to all mammal species worldwide and updating the IUCN Red List of Threatened Species.
  • Coordinating together with over 35 mammal Specialist Groups (within the IUCN Species Survival Commission) to help bring the best science to bare to improve decision making.
  • Prioritizing regions of the world, species, and conservation actions to prevent extinctions with the available conservation resources.
  • Publishing key findings in scientific and general literature to advance the science and policies surrounding mammal conservation efforts.

We aim to support conservation decisions with the best available mammal data globally.

Posted in Lab

Massive participation of the GMA lab to the ICCB congress 2015 in Montpellier

This year the ICCB (27th International Congress for Conservation Biology; 4th European Congress for Conservation Biology) was held in Montpellier, France (2-6 August 2015). GMA lab members participated organizing a symposium, presenting 5 oral interventions and 3 posters!

Michela Pacifici presented as one of the finalist of the student award!



Di Marco & Rondinini – Advances on human pressure quantification and biodiversity monitoring under global change

Oral interventions

Santini, Cornulier, Bullock, Palmer, White, Bocedi, Hodgson, Rondinini, Travis – modeling spread rate in terrestrial mammals and the ability to track a shifting climate: a trait space approach

Baisero & Rondinini – the influence of protected area selection criteria on measures of conservation effort

Pacifici, Visconti, Watson, Rondinini – Ecological and biological characteristics explain the response of species to recent climatic changes

Di Marco, Collen, Rondinini, Mace – Historical drivers of extinction risk: using past evidence to direct future monitoring

Rondinini – Challanges for combining indicators, models and scenarios of human pressure and biodiversity response into a coherent story


Di Marco & Santini – Human pressures predict species’ geographic range size better than biological traits

Santini, Saura, Rondinini – connectivity of the global network of protected areas

Rondinini, Visconti – Decline of european large mammals under global change scenarios


Posted in Lab

Historical drivers of extinction risk: using past evidence to direct future monitoring

Di Marco, M., Collen, B., Rondinini, C., & Mace, G. M. (2015). Historical drivers of extinction risk: using past evidence to direct future monitoring. Proceedings of the Royal Society B, 282, 20150928.


Global commitments to halt biodiversity decline mean that it is essential to monitor species’ extinction risk. However, the work required to assess extinction risk is intensive. We demonstrate an alternative approach to monitoring extinction risk, based on the response of species to external conditions. Using retrospective International Union for Conservation of Nature Red List assessments, we classify transitions in the extinction risk of 497 mammalian carnivores and ungulates between 1975 and 2013. Species that moved to lower Red List categories, or remained Least Concern, were classified as ‘lower risk’; species that stayed in a threatened category, or moved to a higher category of risk, were classified as ‘higher risk’. Twenty-four predictor variables were used to predict transitions, including intrinsic traits (species biology) and external conditions (human pressure, distribution state and conservation interventions). The model correctly classified up to 90% of all transitions and revealed complex interactions between variables, such as protected areas (PAs) versus human impact. The most important predictors were: past extinction risk, PA extent, geographical range size, body size, taxonomic family and human impact. Our results suggest that monitoring a targeted set of metrics would efficiently identify species facing a higher risk, and could guide the allocation of resources between monitoring species’ extinction risk and monitoring external conditions.

Posted in Lab

Fire policy optimization to maximize suitable habitat for locally rare species under different climatic conditions: A case study of antelopes in the Kruger National Park

Pacifici M., Visconti P., Scepi E., Hausmann A., Attorre F., Grant R. & Rondinini C. (2015). Fire policy optimization to maximize suitable habitat for locally rare species under different climatic conditions: A case study of antelopes in the Kruger National Park.

Biological Conservation, 191, 313-321. doi:10.1016/j.biocon.2015.07.021


Fire is a key ecosystem driver in savannahs and it can have large impacts on species distribution and density. A re-examination of fire management in Kruger National Park is currently under review with the objective to maintain natural ecosystem dynamics and favour tourists’ ability to observe animals. We used data on location, intensity and frequency of fires and census data on three species considered as rare and of conservation concern in the park, tsessebe, roan and sable antelope to estimate the relationship between fire occurrence and species occurrence and density. We also investigated the impacts of different environmental predictors on antelope populations. The model predictors that most affected the density and presence of antelopes were mean fire return period, the type of geological substrate and the presence of water-points. We then used our models to evaluate different fire management scenarios and make recommendations for an optimal fire management strategy for the conservation of these rare antelopes. We also tested our scenarios under different precipitation conditions, in order to investigate the likely response of species to climate change. Roan antelope is the most sensitive species to climatic variations, while sable seems to be the most resilient. The approach described here can also be used to improve the conservation of locally rare species in other regions and habitats.

Posted in Lab

Synergies and trade-offs in achieving global biodiversity targets

Di Marco, M., Butchart, S. H. M., Visconti, P., Buchanan, G. M., Ficetola, G. F. and Rondinini, C. (2015), Synergies and trade-offs in achieving global biodiversity targets. Conservation Biology. doi: 10.1111/cobi.12559

Fig.1NEW_V1After their failure to achieve a significant reduction in the global rate of biodiversity loss by 2010, world governments adopted 20 new ambitious Aichi biodiversity targets to be met by 2020. Efforts to achieve one particular target can contribute to achieving others, but different targets may sometimes require conflicting solutions. Consequently, lack of strategic thinking might result, once again, in a failure to achieve global commitments to biodiversity conservation. We illustrate this dilemma by focusing on Aichi Target 11. This target requires an expansion of terrestrial protected area coverage, which could also contribute to reducing the loss of natural habitats (Target 5), reducing human-induced species decline and extinction (Target 12), and maintaining global carbon stocks (Target 15). We considered the potential impact of expanding protected areas to mitigate global deforestation and the consequences for the distribution of suitable habitat for >10,000 species of forest vertebrates (amphibians, birds, and mammals). We first identified places where deforestation might have the highest impact on remaining forests and then identified places where deforestation might have the highest impact on forest vertebrates (considering aggregate suitable habitat for species). Expanding protected areas toward locations with the highest deforestation rates (Target 5) or the highest potential loss of aggregate species’ suitable habitat (Target 12) resulted in partially different protected area network configurations (overlapping with each other by about 73%). Moreover, the latter approach contributed to safeguarding about 30% more global carbon stocks than the former. Further investigation of synergies and trade-offs between targets would shed light on these and other complex interactions, such as the interaction between reducing overexploitation of natural resources (Targets 6, 7), controlling invasive alien species (Target 9), and preventing extinctions of native species (Target 12). Synergies between targets must be identified and secured soon and trade-offs must be minimized before the options for co-benefits are reduced by human pressures.

Posted in Lab

Assessing species vulnerability to climate change

Michela Pacifici, Wendy B. Foden, Piero Visconti, James E. M. Watson, Stuart H.M. Butchart, Kit M. Kovacs, Brett R. Scheffers, David G. Hole, Tara G. Martin, H. Resit Akçakaya, Richard T. Corlett, Brian Huntley, David Bickford, Jamie A. Carr, Ary A. Hoffmann, Guy F. Midgley, Paul Pearce-Kelly, Richard G. Pearson, Stephen E. Williams, Stephen G. Willis, Bruce Young and Carlo Rondinini

Nature Climate change 5,215–224(2015). doi:10.1038/nclimate2448


The effects of climate change on biodiversity are increasingly well documented, and many methods have been developed to assess species’ vulnerability to climatic changes, both ongoing and projected in the coming decades. To minimize global biodiversity losses, conservationists need to identify those species that are likely to be most vulnerable to the impacts of climate change. In this Review, we summarize different currencies used for assessing species’ climate change vulnerability. We describe three main approaches used to derive these currencies (correlative, mechanistic and trait-based), and their associated data requirements, spatial and temporal scales of application and modelling methods. We identify strengths and weaknesses of the approaches and highlight the sources of uncertainty inherent in each method that limit projection reliability. Finally, we provide guidance for conservation practitioners in selecting the most appropriate approach(es) for their planning needs and highlight priority areas for further assessments.

Posted in Lab

Projecting global biodiversity indicators under future development scenarios

Piero Visconti, Michel Bakkenes, Daniele Baisero, Thomas Brooks, Stuart H. M. Butchart, Lucas Joppa, Rob Alkemade, Moreno Di Marco, Luca Santini, Michael Hoffmann, Luigi Maiorano, Robert L. Pressey, Anni Arponen, Luigi Boitani, April E. Reside, Detlef van Vuuren and Carlo Rondinini

Conservation Letters, DOI: 10.1111/conl.12159


Projected LPI (A,B,C) and RLI (D,E,F) for terrestrial carnivores and ungulates under 2 global socio-economic scenarios. Business-as-usual in red and Consumption Change in blue. (A,D) Species can adapt to climate change, (B,E), maximum dispersal under land-use and climate change, (C,F) and no dispersal under land-use and climate change.

To address the ongoing global biodiversity crisis, governments have set strategic objectives and have adopted indicators to monitor progress towards their achievement. Projecting the likely impacts on biodiversity of different policy decisions allows decision makers to understand if and how these targets can be met. We projected trends in two widely used indicators of population abundance (the Living Planet Index; LPI) and extinction risk (the Red List Index; RLI) under different climate and land-use change scenarios. Testing these on terrestrial carnivore and ungulate species, we found that both indicators decline steadily, and by 2050, under a business-as-usual scenario, the LPI declines by 18–35% while extinction risk increases for 8–23% of the species, depending on assumptions about species responses to climate change. Business-as-usual will therefore fail CBD target 12 of improving the conservation status of known threatened species. An alternative sustainable development scenario reduces both extinction risk and population losses compared with Business-as-usual and could lead to population increases. Our approach to model species responses to global changes brings the focus of scenarios directly to the species level, thus taking into account an additional dimension of biodiversity and paving the way for including stronger ecological foundations into future biodiversity scenario assessments.

Posted in Lab

Habitat availability for amphibians and extinction threat: a global analysis

Gentile Francesco Ficetola, Carlo Rondinini, Anna Bonardi, Daniele Baisero & Emilio Padoa-Schioppa

Diversity and Distributions, DOI: 10.1111/ddi.12296


Habitat loss and degradation are the factors threatening the largest number of amphibian species. However, quantitative measures of habitat availability only exist for a small subset of them. We evaluated the relationships between habitat availability, extinction risk and drivers of threat for the world’s amphibians. We developed deductive habitat suitability models to estimate the extent of suitable habitat and the proportion of suitable habitat (PSH) inside the geographic range of each species, covering species and areas for which little or no high-resolution distribution data are available.


We used information on habitat preferences to develop habitat suitability models at 300-m resolution, by integrating range maps with land cover and elevation. Model performance was assessed by comparing model output with point localities where species were recorded. We then used habitat availability as a surrogate of area of occupancy. Using the IUCN criteria, we identified species having narrow area of occupancy, for which extinction risk is likely underestimated.


We developed models for 5363 amphibians. Validation success of models was high (94%), being better for forest specialists and generalists than for open habitat specialists. Generalists had proportionally more habitat than forest or open habitat specialists. The PSH was lower for species having small geographical ranges, currently listed as threatened, and for which habitat loss is recognized as a threat. Differences in habitat availability among biogeographical realms were strong. We identified 61 forest species for which the extinction risk may be higher that currently assessed in the Red List, due to limited extent of suitable habitat.

Main conclusions

Habitat models can accurately predict amphibian distribution at fine scale and allow describing biogeographical patterns of habitat availability. The strong relationship between amount of suitable habitat and extinction threat may help the conservation assessment in species for which limited information is currently available.

Posted in Lab

Human pressures predict species’ geographic range size better than biological traits


Global Change Biology, DOI: 10.1111/gcb.12834

gma_web_picMean values of geographic range size in terrestrial mammals.

Geographic range size is the manifestation of complex interactions between intrinsic species traits and extrinsic environmental conditions. It is also a fundamental ecological attribute of species and a key extinction risk correlate. Past research has primarily focused on the role of biological and environmental predictors of range size, but macroecological patterns can also be distorted by human activities. Here we analyse the role of extrinsic (biogeography, habitat state, climate, human pressure) and intrinsic (biology) variables in predicting range size of the world’s terrestrial mammals. In particular, our aim is to compare the predictive ability of human pressure vs species biology. We evaluated the ability of 19 intrinsic and extrinsic variables in predicting range size for 4,867 terrestrial mammals. We repeated the analyses after excluding restricted-range species and performed separate analyses for species in different biogeographic realms and taxonomic groups. Our model had high predictive ability, and showed that climatic variables and human pressures are the most influential predictors of range size. Interestingly, human pressures predict current geographic range size better than biological traits. These findings were confirmed when repeating the analyses on large-ranged species, individual biogeographic regions and individual taxonomic groups. Climatic and human impacts have determined the extinction of mammal species in the past, and are the main factors shaping the present distribution of mammals. These factors also affect other vertebrate groups globally, and their influence on range size may be similar as well. Measuring climatic and human variables can allow to obtain approximate range size estimations for data deficient and newly discovered species (e.g. hundreds of mammal species worldwide). Our results support the need for a more careful consideration of the role of climate change and human impact – as opposed to species biological characteristics – in shaping species distribution ranges.

IX Congresso Italiano di Teriologia (7-10 May 2014, Civitella Alfedena, IT)

Michela Pacifici presenting “Italian hotspots of mammal species vulnerable to climate change”
Luca Santini awarded for the best publication on Hystrix, the Italian Journal of Mammalogy, for the paper
“Santini L., Di Marco M., Visconti P., Baisero D., Boitani L., Rondinini C. 2013. Ecological correlates of dispersal distance in terrestrial mammals. Hystrix, the Italian Journal of Mammalogy 24(2)

The abstracts of our oral presentations and posters were published and are available on Hystrix vol. 25(special issue)



Posted in Lab